Compton polarimetry for the EIC

Abhay Deshpande, Ciprian Gal, Dave Gaskell, Kent Paschke

Compton polarimetry

•	Has seen	extensive	use in	collider	and	fixed
	target fac	ilities				

- Recent results have reached below 1% systematics at low energies (with electron measurements)
- It is an ideal candidate because of the nondestructive nature of the measurement

Polarimeter	Energy	Sys. Uncertainty
CERN LEP*	46 GeV	5%
HERA LPOL	27 GeV	1.6%
HERA TPOL*	27 GeV	2.9%
SLD at SLAC	45.6 GeV	0.5%
JLAB Hall A	1-6 GeV	1-3%
JLab Hall C	1.1 GeV	0.6%

Compton polarimetry: measurement types

A. Single-photon mode

- Detection event by event; improved precision through fit to energy distribution
- Ideal for low background environments
- B. Multi-photon mode (integrating)
 - The number of detected photons/electrons is measured
 - Will increase the S/B for situations when there is significant backgrounds
- C. Energy weighted multi-photon mode (integrating)
 - The energy of the scattered particles has a linear relationship with measured quantity

Asymmetries for longitudinal and transverse polarimeters

• For both the longitudinal and transverse polarimetry measurements at the at the energies of interested for the EIC the analyzing powers are significant

Longitudinal Compton polarimetry

$$A_{\text{long}} = \frac{\sigma^{++} - \sigma^{-+}}{\sigma^{++} + \sigma^{-+}} = \frac{2\pi r_o^2 a}{(d\sigma/d\rho)} (1 - \rho(1+a)) \left[1 - \frac{1}{(1 - \rho(1-a))^2} \right]$$

- Photon measurements can have large systematics due to detector response
- Best measurements achieved with electron detection
- At higher energies spectrum threshold less important

Compton Asymmetry Spectrum

HERA FP cavity-based LPOL achieved 0.9-1.1% precision with differential measurements in single-photon mode @ 27 GeV

→ Unlikely similar precision can be achieved at lowest energies envisioned for EIC

Transverse Compton polarimetry

$$A_{\rm tran} = \frac{2\pi r_o^2 a}{(d\sigma/d\rho)} \cos\phi \left[\rho (1-a) \frac{\sqrt{4a\rho(1-\rho)}}{(1-\rho(1-a))} \right]$$
 12 GeV

 Measurements are more challenging because you are looking at a position asymmetry

$$\eta = \frac{E_U - E_D}{E_U + E_D}$$

B. Sobloher et al, DESY-11-259, arXiv:1201.2894

- HERA used a sampling calorimeter with top and bottom optically isolated: → Polarization measured via up-down energy asymmetry
- Strip detectors provide can be used to help calibrate the detector response
- With careful polarimeter design, high precision transverse measurements should be achievable

eRHIC specifications

- At 18 GeV bunches will be replaced every 6 min -> polarimetry measurement needs to happen in a much shorter time span
- The amount of electrons per bunch is fairly small ~24 nC → will need bright laser beam to obtain needed luminosity
- Distance between buckets is
 ~10ns → bunch by bunch
 measurement cannot be done
 with a CW laser without super
 fast detectors

Table 1: Maximum Luminosity Parameters

Parameter	hadron	electron		
Center-of-Mass Energy [GeV]	10)4.9		
Energy [GeV]	275	10		
Number of Bunches	13	320		
Particles per Bunch [10 ¹⁰]	6.0	15.1		
Beam Current [A]	1.0	2.5		
Horizontal Emittance [nm]	9.2	20.0		
Vertical Emittance [nm]	1.3	1.0		
Hor. β -function at IP β_x^* [cm]	90	42		
Vert. β -function at IP β_{ν}^* [cm]	4.0	5.0		
Hor./Vert. Fractional Betatron Tunes	0.3/0.31	0.08/0.06		
Horizontal Divergence at IP [mrad]	0.101	0.219		
Vertical Divergence at IP [mrad]	0.179	0.143		
Horizontal Beam-Beam Parameter ξ_x	0.013	0.064		
Vertical Beam-Beam Parameter ξ_{ν}	0.007	0.1		
IBS Growth Time longitudinal/horizontal [hours]	2.2/2.1	-		
Synchrotron Radiation Power [MW]	-	9.18		
Bunch Length [cm]	5	1.9		
Hourglass and Crab Reduction Factor	0.87			
Luminosity [10 ³⁴ cm-2sec-1]	1	.05		

CW vs pulsed laser luminosity

- CW lasers could provide relative rapid measurements for average polarization of all bunches in ring
 - Bunch-by-bunch measurements challenging due to relatively small bunch spacing
- Pulsed system would allow straightforward identification of individual bunches AND improved luminosity
- Looking at a single bunch (with a beam frequency of $^{\sim}78$ kHz) the luminosity for the same average power in the cavity (1kW) as a function of crossing angle shows a significant advantage for the pulsed cavity
- The conceived laser system has a repetition rate of 10MHz
 - Allow for simultaneous measurement of ~120 bunches, but leaving 100 ns between collisions for detector response
 - Shifting laser phase would allow measurement of all bunches

$$\mathcal{L}_{\text{CW}} pprox rac{1 + \cos(\alpha_C)}{\sqrt{2\pi}\sin(\alpha_C)} rac{I_e}{e} rac{P_L \lambda}{hc^2} rac{1}{\sqrt{\sigma_e^2 + \sigma_\gamma^2}}$$

$$\mathcal{L}_{\text{pulsed}} \approx \frac{1 + \cos(\alpha_C)}{2\pi \sin(\alpha_C)} \frac{I_e}{e} \frac{c}{f_{beam}} \frac{P_L \lambda}{hc^2} \frac{1}{\sqrt{\sigma_e^2 + \sigma_\gamma^2}} \left(\sigma_{e,z}^2 + \sigma_{\gamma,z}^2 + \frac{\sigma_e^2 + \sigma_\gamma^2}{\sin^2(\alpha_c/2)} \right)^{\frac{1}{2}}$$

Time estimations: longitudinal

beam energy $[GeV]$	$\langle A_{\rm long}^2 \rangle$	t[s]	$\langle A_{\rm long} \rangle^2$	time [ms]	$\frac{\langle \mathrm{E} \cdot \mathrm{A} \rangle^2}{\langle \mathrm{E}^2 \rangle}$	time [ms]
5	0.0061	29	0.0012	166	0.0022	88
12	0.0244	7	0.0033	69	0.0064	36
18	0.0414	4	0.0041	63	0.0085	30

- Differential measurement assumes 1 photon/electron per crossing
 - The power needed for the laser system is approximately 1W
- The integrated method accepts the entire luminosity of the pulsed system (note the change in unit)
- Measurement times for all bunches in ring about 10 times longer

Time estimations: transverse

$$t_{meth} = \left(\mathcal{L} \ \sigma_{\mathrm{Compton}} \ \mathrm{P_e^2 P_{\gamma}^2} \ \left(\frac{\Delta \mathrm{P_e}}{\mathrm{P_e}}\right)^2 \ \mathrm{A_{meth}^2}\right)^{-1}$$

beam energy $[GeV]$	$\langle A_{\mathrm{UD}}^2 \rangle$	t[s]	$\langle A_{\rm UD} \rangle^2$	time [ms]	$\frac{\langle E \cdot A \rangle^2}{\langle E^2 \rangle}$	time [ms]
5	0.0012	144	0.0008	234	0.0005	352
12	0.0048	365	0.0032	72	0.0019	123
18	0.0080	222	0.0052	49	0.0028	92

- Differential measurement assumes 1 photon/electron per crossing
 - The power needed for the laser system is approximately 1W
- The integrated method accepts the entire luminosity of the pulsed system (note the change in unit)

January 30th 2020 EIC - R&D Meeting 10

Proposed R&D

- We'd like to focus this R&D effort on developing a pulsed cavity with a large average power and large frequency
- Additionally we'd like to increase the robustness of the system by having radsoft items (like seed laser and amplifier) at a large distance from the cavity itself
- Ideally we'd be able to test the system at CEBAF in hall A or hall C

Laser system development

<u>Initial laser development in lab</u>

- Key Equipment required:
 - Mode-locked laser. Fiber amplifier and PPLN crystal also required for green laser.
 - Low-loss mirrors, cavity electronics
 - Some of the above may be borrowed from collaborating institutions

Deployment in beamline

- Could be deployed in either Hall A or C at JLab
- Would require some modification of interaction region/vacuum system
 - Existing system somewhat modular, so modifications could possibly be done relatively cheaply
- Test with beam to verify ability to synchronize laser pulses with beam RF time

Conclusions

- Pulsed cavity is desirable to be able to make precise polarization measurements of each electron bunch rapidly
- A pulsed laser system allows straightforward measurement of the bunchby-bunch electron polarization without the need for very fast detectors
- CW Fabry-Perot cavities relatively common in accelerator environment pulsed cavity requires R&D and testing

January 30th 2020 EIC - R&D Meeting 13

Backup

14

Laser wavelength - power

$$E_{\gamma} \approx E_{\text{laser}} \frac{4a\gamma^2}{1 + a\theta_{\gamma}^2 \gamma^2}$$

$$E_{\gamma}^{\max} = 4aE_{\text{laser}}\gamma^2$$

$$ho = E_{\gamma}/E_{\gamma}^{
m max}$$

$$E_{\gamma} \approx E_{\text{laser}} \frac{4a\gamma^2}{1 + a\theta_{\gamma}^2 \gamma^2}, \qquad A_{\text{long}} = \frac{\sigma^{++} - \sigma^{-+}}{\sigma^{++} + \sigma^{-+}} = \frac{2\pi r_o^2 a}{(d\sigma/d\rho)} (1 - \rho(1+a)) \left[1 - \frac{1}{(1 - \rho(1-a))^2} \right]$$

$$ho = E_{\gamma}/E_{\gamma}^{
m max}$$
 $a = rac{1}{1 + 4\gamma E_{
m laser}/m_e}.$

Laser power requirements for a CW cavity

beam energy [GeV]	Unpol Xsec[barn]	\mathcal{L} [1/(barn ² s)]	Laser Power [W]
5	0.569	137439	1.1
12	0.482	162139	1.3
18	0.432	180968	1.5

Table 2: Luminosity and laser power needed to achieve measurement times listed in table 4.

Along for 1, 5, 18 GeV (532 nm)

$$A_{\text{long}} = \frac{\sigma^{++} - \sigma^{-+}}{\sigma^{++} + \sigma^{-+}} = \frac{2\pi r_o^2 a}{(d\sigma/d\rho)} (1 - \rho(1+a)) \left[1 - \frac{1}{(1 - \rho(1-a))^2} \right],$$

January 30th 2020 EIC - R&D Meeting

$$A_{\text{tran}} = \frac{2\pi r_o^2 a}{(d\sigma/d\rho)} \cos \phi \left[\rho (1-a) \frac{\sqrt{4a\rho(1-\rho)}}{(1-\rho(1-a))} \right].$$

January 30th 2020 EIC - R&D Meeting 18

DG proposal results

- There is a discrepancy in the my calculation
- It seems to come from "common" terms in luminosity calculations (the ratio seems ok)

Lumi calculations

double eSigmaT = 400e-6; //m; eRHIC 40 double gSigmaT = 100e-6; //m double gSigmaL = 12e-12 * clight; //m double eSigmaL = 13e-12 * clight; //m ~ double ePower = 1e3; //W double eFreq = 78e3; //98e6Hz (*6 buck double nElectron = 1/1.6e-19 * 10e-9;
$$L_{pulsed} = \frac{(1 + \cos(\alpha_c))}{2\pi f_{beam}} \frac{I_e}{e} \frac{P_L \lambda}{hc} \frac{1}{\sqrt{\sigma_e^2 + \sigma_\gamma^2}} \frac{1}{\sin(\alpha_c)} \frac{1}{\sqrt{\sigma_{e.z}^2 + \sigma_{\gamma.z}^2 + \frac{(\sigma_e^2 + \sigma_\gamma^2)}{\sin^2(\alpha_c/2)}}}$$

Calculated the luminosity for the lowest charge (10nC) in the beam

beam energy [GeV]	peam energy [GeV] e speed (c)		e speed m/s	length	time for one revol	frequency
1	0.9997444674	299792458	299715851.2	3834	0.0000127921162	78173.14847
5	0.9999488987	299792458	299777138.2	3834	0.0000127895009	78189.1336
18	0.9999858055	299792458	299788202.6	3834	0.000012789028	78192.01945

Rho dependence on angle for 1, 5, 18 GeV (532 nm)

$$E_{\gamma} \approx E_{\text{laser}} \frac{4a\gamma^2}{1 + a\theta_{\gamma}^2 \gamma^2},$$

$$E_{\gamma}^{\max} = 4aE_{\text{laser}}\gamma^2$$

$$\rho = E_{\gamma}/E_{\gamma}^{\rm max}$$

$$a = \frac{1}{1 + 4\gamma E_{\text{lasor}}/m_e}.$$

January 30th 2020 EIC - R&D Meeting

Unpolarized cross-section

• The right plot is used for the <(E*A*sigma)^2>/<(E*sigma)^2>

Unpolarized cross-section

 Weighted asymmetries used for the statistics estimation

5 GeV

12 GeV

18 GeV

$$A_{\text{tran}} = \frac{2\pi r_o^2 a}{(d\sigma/d\rho)} \cos \phi \left[\rho (1-a) \frac{\sqrt{4a\rho(1-\rho)}}{(1-\rho(1-a))} \right].$$

January 30th 2020 EIC - R&D Meeting 24

AT asymmetry at ϕ =0

$$A_{\text{tran}} = \frac{2\pi r_o^2 a}{(d\sigma/d\rho)} \cos \phi \left[\rho (1-a) \frac{\sqrt{4a\rho(1-\rho)}}{(1-\rho(1-a))} \right].$$

January 30th 2020 EIC - R&D Meeting 25

UD asymmetry at z=60 m

$$A_{\rm tran} = \frac{2\pi r_o^2 a}{(d\sigma/d\rho)} \cos \phi \left[\rho (1-a) \frac{\sqrt{4a\rho(1-\rho)}}{(1-\rho(1-a))} \right].$$

January 30th 2020

AUD asymmetry used for averages

Time calculations

$$t_{meth} = \frac{1}{\mathcal{L} \left(\frac{\Delta P_e}{P_e}\right)^2 P_e^2 P_{\gamma}^2} \frac{1}{A_{meth}^2} \frac{1}{\sigma_t},$$

$$|\langle A_l \rangle|^2 < \frac{\langle EA_l \rangle|^2}{\langle E^2 \rangle} < \langle A^2 \rangle.$$

• For integral, energy weighted, differenatial

Measurement time for 1kW laser A_long

differential meas	urement	Laser: 532nm									
		Lpulsed (1kW)	2.00E+05	1/barn/s							
	beam energy [GeV]	Unpol Xsec[barn]	<a^2></a^2>	Pe	Pgamma		L (fbeam/xsection)	Power needed [kW]	1/t(1%)	t[s]	t[min]
	1	0.64255	3.01E-04	0.0	5	1	121660.8022	0.6083040111	1.70E-03	5.88E+02	9.79
	5	0.568901	6.06E-03	0.0	5	1	137438.9105	0.6871945523	3.42E-02	2.92E+01	0.49
	12	0.482249	2.44E-02	0.0	5	1	162139.1947	0.8106959733	1.38E-01	7.26E+00	0.12
	18	0.432076	4.14E-02	0.0	5	1	180968.208	0.9048410402	2.34E-01	4.28E+00	0.07
integrating meas	surement	Laser: 532nm									
	beam energy [GeV]	Unpol Xsec[barn]	<a>^2	Pe	Pgamma		L_pulsed [1/barn/s]	1/t(1%)	t_int	t[min]	
	1	0.64255	7.16E-05	0.8	5	1	200000	6.65E-04	1.50E+03	25.07	
	5	0.568901	1.18E-03	0.8	5	1	200000	9.66E-03	1.04E+02	1.73	
	12	0.482249	3.31E-03	0.8	5	1	200000	2.31E-02	4.33E+01	0.72	
	18	0.432076	4.10E-03	0.8	5	1	200000	2.56E-02	3.90E+01	0.65	
energy integrate	d										
5, 5		Unpol Xsec[barn]	<ea>^2/<e^2></e^2></ea>	Pe	Pgamma		L_pulsed [1/barn/s]	1/t(1%)	t_int	t[min]	
	5	0.568901	2.21E-03	0.0	5	1	200000	1.82E-02	5.51E+01	0.92	
	12	0.482249	0.0064197	0.0	5	1	200000	0.04473566693	22.35352837	0.37	
	18	0.432076	0.00845441	0.8	5	1	200000	0.05278509362	18.94474238	0.32	

Measurement time for 1kW laser A_UD

urement	Laser: 532nm									
	Lpulsed (1kW)	2.00E+05	1/barn/s							
beam energy [GeV]	Unpol Xsec[barn]	<a^2></a^2>	Pe	F	^o gamma	L (fbeam/xsection)	Power needed [kW]	1/t(1%)	t[s]	t[min]
5	0.568901	1.23E-03	(0.85	1	137438.9105	0.6871945523	6.96E-03	1.44E+02	2.39
12	0.482249	4.84E-03	1	0.85	1	162139.1947	0.8106959733	2.74E-02	3.65E+01	0.61
18	0.432076	7.98E-03	1	0.85	1	180968.208	0.9048410402	4.51E-02	2.22E+01	0.37
urement	Laser: 532nm									
beam energy [GeV]	Unpol Xsec[barn]	<a>^2	Pe	F	^o gamma	L_pulsed [1/barn/s]	1/t(1%)	t_int	t[min]	
5	0.568901	8.33E-04		0.85	1	200000	6.85E-03	1.46E+02	2.43	
12	0.482249	3.20E-03	(0.85	1	200000	2.23E-02	4.48E+01	0.75	
18	0.432076	5.23E-03		0.85	1	200000	3.26E-02	3.07E+01	0.51	
1										
	Unpol Xsec[barn]	<ea>^2/<e^2></e^2></ea>	Pe	F	^o gamma	L_pulsed [1/barn/s]	1/t(1%)	t_int	t[min]	
5	0.568901	5.53E-04	1	0.85	1	200000	4.54E-03	2.20E+02	3.67	
12	0.482249	0.00187264	1	0.85	1	200000	0.01304948819	76.63135792	1.28	
18	0.432076	0.00279302	1	0.85	1	200000	0.01743821534	57.34531776	0.96	
	beam energy [GeV] 5 12 18 urement beam energy [GeV] 5 12 18	Lpulsed (1kW) beam energy [GeV] Unpol Xsec[barn] 5 0.568901 12 0.482249 18 0.432076 urement Laser: 532nm beam energy [GeV] Unpol Xsec[barn] 5 0.568901 12 0.482249 18 0.432076 Unpol Xsec[barn] 5 0.568901 10 Unpol Xsec[barn] 11 0.482249 12 0.482249	Lpulsed (1kW) 2.00E+05	Lpulsed (1kW) 2.00E+05 1/barn/s beam energy [GeV] Unpol Xsec[barn] <a^2> Pe 5 0.568901 1.23E-03 12 0.482249 4.84E-03 18 0.432076 7.98E-03 urement Laser: 532nm beam energy [GeV] Unpol Xsec[barn] <a>^2 Pe 5 0.568901 8.33E-04 12 0.482249 3.20E-03 18 0.432076 5.23E-03 Unpol Xsec[barn] <ea>^2 Pe 5 0.568901 5.53E-04 12 0.482249 0.00187264</ea></a^2>	beam energy [GeV] Unpol Xsec[barn] <a^2> Pe F 5 0.568901 1.23E-03 0.85 12 0.482249 4.84E-03 0.85 18 0.432076 7.98E-03 0.85 urement Laser: 532nm Pe F 5 0.568901 8.33E-04 0.85 12 0.482249 3.20E-03 0.85 18 0.432076 5.23E-03 0.85 18 0.432076 5.23E-03 0.85 19 Unpol Xsec[barn] <ea>^2/<e^2> Pe F 5 0.568901 5.53E-04 0.85 10 0.482249 0.00187264 0.85</e^2></ea></a^2>	Lpulsed (1kW) 2.00E+05 1/barn/s beam energy [GeV] Unpol Xsec[barn] <a^2> Pe Pgamma 5 0.568901 1.23E-03 0.85 1 12 0.482249 4.84E-03 0.85 1 18 0.432076 7.98E-03 0.85 1 urement Laser: 532nm Pe Pgamma 5 0.568901 8.33E-04 0.85 1 12 0.482249 3.20E-03 0.85 1 18 0.432076 5.23E-03 0.85 1 18 0.432076 5.23E-03 0.85 1 19 Unpol Xsec[barn] <ea>^2/<<e^2> Pe Pgamma 5 0.568901 5.53E-04 0.85 1 10 0.568901 5.53E-04 0.85 1 12 0.482249 0.00187264 0.85 1</e^2></ea></a^2>	Lpulsed (1kW) 2.00E+05 1/barn/s	Lpulsed (1kW) 2.00E+05 1/barn/s Pe Pgamma L (fbeam/xsection) Power needed [kW]	Light Ligh	Lpulsed (1kW) 2.00E+05 1/barn/s Pe Pgamma L (fbeam/xsection) Power needed [kW] 1/t(1%) t[s]

Time calculations-differential measurement (EA)

$$L_{pulsed} = \frac{(1 + \cos(\alpha_c))}{2\pi f_{beam}} \frac{I_e}{e} \frac{P_L \lambda}{hc} \frac{1}{\sqrt{\sigma_e^2 + \sigma_\gamma^2}} \frac{1}{\sin(\alpha_c)} \frac{1}{\sqrt{\sigma_{e,z}^2 + \sigma_{\gamma,z}^2 + \frac{(\sigma_e^2 + \sigma_\gamma^2)}{\sin^2(\alpha_c/2)}}}$$

$$L = \frac{f_b N_e N_\gamma}{2\pi\sigma_{x\gamma}\sigma_{y\gamma}\sqrt{1+\left(0.5\theta\sigma_{z\gamma}/\sigma_{y\gamma}\right)^2}} \qquad \text{R. Petti/Elke}$$

$$N_{Compton}[s^{-1}] = L\sigma_{Compton}$$
$$N_{Compton}[bunch^{-1}] = L\sigma_{Compton}/f_b$$

- Not sure how they got to this Luminosity equation
- They assume the values to the right and assume 1 photon per crossing
 - Not sure why the frequency in this case is 9.4MHz

Parameter	value
$f_{ m b}$	9.4 MHz [3]
$N_{ m e}$	$0.07 \times 10^{11} [3]$
σ_x	$400~\mu{\rm m}~[10]$
σ_y	$400~\mu{\rm m}~[10]$
σ_z	0.4 cm [3]
$\sigma_{ m Compton}$	400 mb

Time calculations-differential measurement

$$L_{pulsed} = \frac{(1 + \cos(\alpha_c))}{2\pi f_{beam}} \frac{I_e}{e} \frac{P_L \lambda}{hc} \frac{1}{\sqrt{\sigma_e^2 + \sigma_\gamma^2}} \frac{1}{\sin(\alpha_c)} \frac{1}{\sqrt{\sigma_{e,z}^2 + \sigma_{\gamma,z}^2 + \frac{(\sigma_e^2 + \sigma_\gamma^2)}{\sin^2(\alpha_c/2)}}}$$
 DG

double	eSigmaT = 400e-6; //m; eRHIC 40
double	gSigmaT = 100e-6; //m
double	gSigmaL = 12e-12 * clight; //m
double	eSigmaL = 13e-12 *clight; //m ~
double	lPower = 1e3; //W
double	eFreq = 78e3; //98e6Hz (*6 buck
double	nElectron = 1/1.6e-19 * 10e-9;

beam energy [GeV]	Unpol Xsec[barn]	<a^2></a^2>	Pe	Pgamma	L (fbeam/xsection)	Power needed [kW]	1/t(1%)	t[s]	t[min]
1	0.64255	3.01E-04	0.85	1	121660.8022	0.6083040111	1.70E-03	5.88E+02	9.79
5	0.568901	6.06E-03	0.85	1	137438.9105	0.6871945523	3.42E-02	2.92E+01	0.49
18	0.432076	4.14E-02	0.85	1	180968.208	0.9048410402	2.34E-01	4.28E+00	0.07

- Xing angle at HERA was 3.3 deg (for the longitudinal Compton)
- I don't have updated values at the IR from eRHIC
 - The xy plane is not symmetric at all (flat almond shape)
- With the correct luminosity calculation it still seems that ~
 1kW (vs 12W) is needed for a less than 1min msmt
 - Backgrounds should be considered as well

32

Time calculations-integral measurement

$$L_{pulsed} = \frac{(1 + \cos(\alpha_c))}{2\pi f_{beam}} \frac{I_e}{e} \frac{P_L \lambda}{hc} \frac{1}{\sqrt{\sigma_e^2 + \sigma_\gamma^2}} \frac{1}{\sin(\alpha_c)} \frac{1}{\sqrt{\sigma_{e,z}^2 + \sigma_{\gamma,z}^2 + \frac{(\sigma_e^2 + \sigma_\gamma^2)}{\sin^2(\alpha_c/2)}}}$$
 DG

double eSigmaT = 400e-6; //m; eRHIC 40
double gSigmaT = 100e-6; //m
double gSigmaL = 12e-12 * clight; //m
double eSigmaL = 13e-12 * clight; //m ~
double lPower = 1e3; //W
double eFreq = 78e3; //98e6Hz (*6 buck
double nElectron = 1/1.6e-19 * 10e-9;

beam energy [GeV]	Unpol Xsec[barn]	<a>^2	Pe	Pgamma	L_pulsed [1/bam/s]	1/t(1%)	t_int	t[min]
1	0.64255	7.16E-05	0.85	1	200000	6.65E-04	1.50E+03	25.07
5	0.568901	1.18E-03	0.85	1	200000	9.66E-03	1.04E+02	1.73
18	0.432076	4.10E-03	0.85	1	200000	2.56E-02	3.90E+01	0.65

- Xing angle at HERA was 3.3 deg (for the longitudinal Compton)
- The asymmetry weighting shows up here, but it's not that big of a deal (factor 3 for 5 GeV and factor 9 for 18 GeV)

HERA LPOL

- Crossing angle should be about 0.4758 rad (27 deg?!)
- Single photon mode: ngamma= 0.001 per crossing; s/b=0.2; 1%msmt at 2.5h
- Multiphoton mode: ngamma=1000; pulsed laser 100Hz (HERA 10MHz); 1% 1min

HERA LPOL

Figure 1. Scheme of the cavity surrounding the electron beam pipe with the laser and main mirrors.

- Crossing angle 3.3 deg (58mrad)
- Single photon mode: ngamma= 0.001 per crossing; s/b=0.2; 1%msmt at 2.5h
- Multiphoton mode: ngamma=1000; pulsed laser 100Hz (HERA 10MHz); 1% 1min

HERA TPOL

• Crossing angle should be about 0.4411 rad (25 deg?!)

eRHIC parameters (max luminosity)

Table 1: Maximum Luminosity Parameters

Parameter	hadron	electron
Center-of-Mass Energy [GeV]	10	14.9
Energy [GeV]	275	10
Number of Bunches	13	320
Particles per Bunch [10 ¹⁰]	6.0	15.1
Beam Current [A]	1.0	2.5
Horizontal Emittance [nm]	9.2	20.0
Vertical Emittance [nm]	1.3	1.0
Hor. β -function at IP β_x^* [cm]	90	42
Vert. β -function at IP β_{ν}^{*} [cm]	4.0	5.0
Hor./Vert. Fractional Betatron Tunes	0.3/0.31	0.08/0.06
Horizontal Divergence at IP [mrad]	0.101	0.219
Vertical Divergence at IP [mrad]	0.179	0.143
Horizontal Beam-Beam Parameter ξ_x	0.013	0.064
Vertical Beam-Beam Parameter ξ_v	0.007	0.1
IBS Growth Time longitudinal/horizontal [hours]	2.2/2.1	-
Synchrotron Radiation Power [MW]	- -	9.18
Bunch Length [cm]	5	1.9
Hourglass and Crab Reduction Factor	0	.87
Luminosity [10 ³⁴ cm-2sec-1]	1.	.05

- 18 GeV bunches replaced every 6 min
- 10 nC ~ 6e10 e- per bunch
- Half of the bunches collide at each IR
- Energy in the Rapid cycling synchrotron is from 5 GeV to 18 GeV
 - Luminosity will be below 1e33 for E<5GeV
- 22mrad crossing angle

Compton Polarimeter summary

Table 7. Compton polarimeters including nominal operating energies and performance. Not all Compton polarimeters are included in the table — an emphasis has been placed on those used to provide absolute beam polarization measurements.

Polarimeter	Beam energy	Laser wavelength and technology	Detection and method	Sys. uncertainty (dP/P)	References
CERN LEP	$46\mathrm{GeV}$	532 nm (pulsed)	γ /integrating	5%	99, 100
HERA LPOL	$27.5\mathrm{GeV}$	532 nm (pulsed)	γ /integrating	1.6%	85
HERA TPOL 27.5 GeV		514 nm (CW)	γ /counting	2.9%	92, 101
MIT-Bates	0.3–1 GeV	532 nm	γ /counting	6%	<mark>95</mark> , <mark>96</mark>
NIKHEF	<1 GeV	514 nm	γ /counting	4.5% @ 440 MeV	94
Mainz A4	0.85,1.5 GeV	514 nm intra-cavity Ar–ion	(γ,e) /counting	N/A	98
JLab Hall A	1–6 GeV	1064 nm, FP cavity	γ /counting	3% (2002)	81
			e/counting	1% (2006)	102
			γ /integrating	1% (2009)	103
	$1.1\mathrm{GeV}$	532 nm, FP cavity	γ /integrating	1.1% (2010)	104, <mark>9</mark>
JLab Hall C	$1.1\mathrm{GeV}$	532 nm, FP cavity	e/counting	0.6%	82
			γ /integrating	3%	105
SLD at SLAC	$45.6\mathrm{GeV}$	532 nm (pulsed)	$e/\mathrm{multiphoton}$	0.5%	<mark>86</mark> , <u>106</u>

38

Laser wavelength - power

